当前位置首页 > 电子工程/通信技术 > 3G/4G/5G/新技术
搜柄,搜必应! 快速导航 | 使用教程

Section145GradientsandDirectionalDerivativesinSpace145节梯度和空间定向衍生物

文档格式:PPT| 6 页|大小 50.50KB|2024-11-17 发布|举报 | 版权申诉
第1页
第2页
第3页
下载文档到电脑,查找使用更方便 还剩页未读,继续阅读>>
1 / 6
此文档下载收益归作者所有 下载文档
  • 版权提示
  • 文本预览
  • 常见问题
  • Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Section 14.5Gradients and Directional Derivatives in Space,Directional Derivative of Function of 3 Variables,Let,w,=,f,(,x,y,z,)and let the partial derivatives of,f,exist at(,a,b,c,)in its domain.Let be a unit vector.Then:,Now,using a similar argument to last section we can show that,where,is the angle between the gradient and the unit vector,Similar to before we have,If,=0,then our direction is the same as the gradient and,If,=,then our direction is the opposite of the gradient and,If,=,/2,then our direction is the perpendicular to the gradient and,When we had a function of 2 variables,if the directional derivative was zero we were moving in a direction tangent to the level curve and the gradient was perpendicular to the level curve,With a function of 3 variables,if the directional derivative is zero we are moving in a direction tangent to the level surface and the gradient is perpendicular to that level surface,Example,Find,Find the derivative in the direction of,Find the maximum rate of change of,f,at(3,4,5),Find the vector in the direction of the maximum rate of change at(3,4,5),Finding a Tangent Plane,Determine the equation of the plane tangent to at(1,1),Now consider,f,the function of a level surface of where,w,=0,Now we know that the gradient of,w,at a point(,a,b,c,)is perpendicular to,w,at that point,Therefore we have,Now find the tangent plane using the gradient,Lets make sure they are the same,。

    点击阅读更多内容
    卖家[上传人]:ranfand
    资质:实名认证
    相关文档
    正为您匹配相似的精品文档